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ABSTRACT
In the fields of neuroimaging and genetics, a key goal is testing the association of a single outcome with
a very high-dimensional imaging or genetic variable. Often, summary measures of the high-dimensional
variable are created to sequentially test and localize the association with the outcome. In some cases, the
associations between the outcome and summary measures are significant, but subsequent tests used to
localize differences are underpowered and do not identify regions associated with the outcome. Here, we
propose ageneralizationof Rao’s score test basedonprojecting the score statistic onto a linear subspaceof a
high-dimensional parameter space. The approach provides a way to localize signal in the high-dimensional
space by projecting the scores to the subspace where the score test was performed. This allows for infer-
ence in the high-dimensional space to be performed on the same degrees of freedom as the score test,
effectively reducing the number of comparisons. Simulation results demonstrate the test has competitive
power relative to others commonly used. We illustrate themethod by analyzing a subset of the Alzheimer’s
Disease Neuroimaging Initiative dataset. Results suggest cortical thinning of the frontal and temporal lobes
may be a useful biological marker of Alzheimer’s disease risk. Supplementary materials for this article are
available online.

1. Introduction

In scientific fields in which high-dimensional data are promi-
nent, it is often of interest to test the association of a single
continuous or categorical outcome with a large number of pre-
dictors. A common approach in neuroimaging is to reduce the
number of hypothesis tests by testing sequentially. For exam-
ple, an investigator might first perform a test for the associa-
tion of a phenotype with an imaging variable averaged across
the entire brain. If the test rejects the null hypothesis of no asso-
ciation between brain and phenotype, then subsequent tests are
conducted on regional averages of the data or on every voxel in
the image using multiplicity correction to address the number
of tests performed. Often, location-specific results yield few or
no significant findings due to reduced signal and the necessary
adjustment for the large number of tests, even though the whole
brain average data show a significant association.

In this article, we propose a unified approach to test the asso-
ciation of an imaging or other high-dimensional predictor with
an outcome and perform post hoc inference to localize signal.
The framework is a modification of Rao’s score test for mod-
els with a high- or infinite-dimensional parameter defined on
a compact space such as the brain. Though the approach is
designed for hypothesis testing in neuroimaging, it is applica-
ble to a wide range of scientific domains.

Rao’s score test assumes a model where Yi ∈ R are inde-
pendent and identically distributed observations from density
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f (y; θ ) and that the parameter θ = (α, β) ∈ � ⊂ R
m+p where

α ∈ R
m is a nuisance parameter and β ∈ R

p is the param-
eter of interest. We seek to test the hypothesis H0 : β = β0
for some β0 ∈ R

p. Define the score function U = U(θ ) =
n−1 ∑n

i=1
∂ log f (Yi|θ )

∂β
(θ ) and let θ0 = (α, β0) be the true value of

the parameter underH0. Let S = U(α̂, β0) be the score function
evaluated at the maximum likelihood estimate of α under the
null hypothesisH0. Under the null and the conditions described
in Section S.2, the covariance of S can be obtained from the
Fisher information evaluated at the null parameter value,

�(θ0) = E
{
[(∂/∂θ ) log f (Y1|θ )]T [(∂/∂θ ) log f (Y1|θ )]|θ0

}
.

The sum of scores (Sum) test originally discussed by Rao
(1948) has been used in genetics and neuroimaging (Pan 2009;
Madsen and Browning 2009; Kim et al. 2014). The Sum test is
based on the statistic

n
(STζ )2

ζ T �̂ζ
, (1)

where ζ ∈ R
p is a given vector of weights. The denominator is

an estimate of the variance of STζ , so that the statistic is asymp-
totically χ2

1 (Rao 1948). This test has low power when a large
number of variables are not associated with the outcome (Pan
et al. 2014).

In the case of unknown weights, when p < n, Rao (1948)
proposed maximizing the Sum test statistic with respect to the
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weights,

max
ζ �=0

n
(STζ )2

ζ T �̂ζ
= nST �̂−1S. (2)

When n > p this statistic is approximately distributed as χ2
p

under the null, however when n < p, it is not defined because
�̂ is singular.

For finite-dimensional parameters, our proposed test can
be thought of as a generalization of Rao’s test in the case where
the estimate of the information matrix is singular. When p > n,
the test maximizes the statistic (1) with respect to the vector ζ

over a subspace, L, of Rp. Maximization of the Sum test in the
subspace L is equivalent to projecting the scores for the original
model to a lower-dimensional space within which the informa-
tion matrix is invertible. For this reason, we call the test a pro-
jected score test (PST). The procedure does not assume sparsity,
but attempts to conserve power by reducing the dimension of the
data and performing inference in the lower-dimensional space.

In many cases, if a score test rejects H0, then it is of
primary interest to perform post hoc inference to identify
nonzero parameters. In neuroimaging, this amounts to a high-
dimensional testing problem where the association is tested at
each location in the image. The standard approach is to per-
form a hypothesis test at each parameter location and use a
multiplicity correction procedure. Such methods in neuroimag-
ing that control the family-wise error rate (FWER) have relied
on Gaussian random field theory (Friston et al. 1994), but have
recently been shown to have Type 1 error rates far from the nom-
inal level in real data due to unmet assumptions (Silver, Mon-
tana, and Nichols 2011; Eklund, Nichols, and Knutsson 2016).
Recently, considerable research activity has focused on leverag-
ing the dependence of the tests to control the false discovery
rate (FDR) in high-dimensional settings (Efron 2007). Sun et al.
(2015) developed a procedure to control the FDR for spatial data
as well as an approach for controlling the expected proportion of
false clusters. Fan, Han, and Gu (2012) discussed estimation of
the false discovery proportion (FDP) under dependence for nor-
mally distributed test statistics based on a factor approximation.
In contrast, the PST post hoc inference procedure is performed
by projecting the scores onto L, and controlling the FWER of
the projected scores.

Several recent studies have considered hypothesis tests for
functional data, which is conceptually similar to our approach
for an infinite-dimensional parameter. Reiss and Ogden (2010)
proposed inverting simultaneous confidence bands for the
parameter of a functional predictor to test which locations of
the image are associated with the outcome. Smith and Fahrmeir
(2007) used a binary Markov random field model to compute
the joint probability that the marginal parameter estimates are
equal to zero. Our post hoc inference is most similar to Smith
and Fahrmeir (2007) as the interpretation of the contribution of
the scores retains a marginal interpretation.

We derive the asymptotic null distribution of the PST statistic
under some standard regularity conditions. For a normal linear
model, we show how the finite sample distribution of our statis-
tic can be calculated exactly for fixed n and p. For data that are
measured on a compact space, such as brain images, we discuss

sufficient theoretical assumptions for characterizing test behav-
iors as both n and p approach infinity.

Our approach to asymptotics in p studies the growth of
dimension of the grid at which the underlying stochastic pro-
cess is observed. That is, as p → ∞ we assume that the data
are observed at increasing resolution. The rate that p increases
is thus not dependent on n. In contrast, high-dimensional tests
that do not make this assumption often have restrictions on the
rates of growth of n and p. For example, Xu et al. (2016) bound
the rate at which p increases by a function of n, and Cai, Liu,
and Xia (2014) required that the maximum expected value of
the false null statistics is larger than a given function of n and p.

To demonstrate how the test can be used in neuroimaging,
we investigate the association of cortical thickness with mild
cognitive impairment (MCI) in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study, a dataset with p =18,715
and n = 628. The outer surface of the brain (cortex) represents
a highly folded sheet in three-dimensional space. The thick-
ness of the cortex is known to be affected in individuals with
psychopathology and neurological illness. MCI is a subtle pre-
Alzheimer’s disease decline in cognitive functioning. There is
significant clinical interest in finding biological markers of MCI
to identify those at risk for developing Alzheimer’s disease, as
prevention strategies and therapies for early disease are increas-
ingly common. In this dataset, we seek to localize regions of the
brain where cortical thinning provides additional information
with regard to the diagnosis of MCI beyond what can be ascer-
tained by neurocognitive scales alone.

For the remainder of the article, we denotematrices by upper-
case italic letters (X), vectors by lowercase (x), and random vec-
tors by uppercase Roman letters (X). Hilbert spaces are denoted
with black-board letters (X) and Greek letters denote model
parameters. For the singular value decomposition (SVD) of any
matrix, wewill assume that the smallest dimensions of thematri-
ces obtained are equal to the rank of thematrix. L−→ denotes con-
vergence in law and P−→ denotes convergence in probability.

2. The Projected Score Test

In Section 2.1, we define the finite parameter PST statistic and
give its asymptotic distribution for fixed p. In Section 2.2, we
describe conditions sufficient for studying asymptotics in p. We
discuss the PST for normal linear models in Section 2.3.

2.1. PST for Finite-Dimensional Parameters

We assume the observed data are finite-dimensional representa-
tions that are generated from an underlying stochastic process.
Here, we informally define the finite-dimensional likelihood and
refer the interested reader to Appendix A.1 for further details
on deriving the finite-dimensional likelihood from the infinite-
dimensional likelihood.

LetV be a nonempty compact subset ofR3 andL2(V) be the
space of square integrable functions from V to R. V represents
the space on which data can be observed; in neuroimaging this
space is the volume of the brain. The underlying images Gi take
values in L2(V); however, the observed data are p-dimensional
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discretizations of this image. Throughout this section, wemodel
an outcome Yi ∈ R as a function of observed image data Gip ∈
R

p and a set of covariates Xi ∈ R
k. Thus, the observed data can

be described as independent and identically distributed obser-
vations (Yi,Xi,Gip). We denote the collection of data by Y =
(Y1, . . . ,Yn) and similarly define X = (X1, . . . ,Xn) and Gp =
(G1p, . . . ,Gnp). We define a parameter θp = (α, βp) ∈ � ⊂
R

m+p, where α ∈ R
m is a nuisance parameter and βp ∈ Rp is the

parameter of interest. Together these parameters describe the
conditional distribution of Y given the imaging data and covari-
ates. We allow m ≥ k to flexibly model the relationship of the
covariates and outcome, for example, with unpenalized splines.

Denote the finite-dimensional likelihood by 
(θp;Y) =
n−1 ∑n

i=1 ∂ log f (Yi | θp,X,Gp)/∂βp. Define the score function
Unp = ∂


∂βp
{θp;Y} and let

Snp = Unp(α̂, βp0) ∈ R
p (3)

denote the score function evaluated at the maximum likelihood
estimate (MLE) under the null hypothesis

H0 : βp = βp0. (4)

Let the Fisher information for the full model be

�F (θp0) = Eθp0

( {
∂

∂θp
log f (Y1 | θp,X,Gp)

}

×
{

∂

∂θp
log f (Y1 | θp,X,Gp)

}T ∣∣∣
θp0

)

=
[

�α �αβ

�βα �β

]
, (5)

where θp0 = (α, βp0). Then the asymptotic variance of
√
nSnp

under H0 is (see, e.g., Van der Vaart 2000)

�(θp0) = �β − �βα�−1
α �αβ. (6)

With the finite parameter scores defined, we can define the PST.

Definition 1. Let PL be the orthogonal projection matrix onto a
linear space L ⊂ R

p with r = dim(L) < n − m. Let Snp be as
defined in (3) and �̂ be the plug-in estimator of the covariance
(6) obtained from

�̂F = n−1
n∑

i=1

(
∂ log f (Yi | θp,X,Gp)

∂θp

)

×
(

∂ log f (Yi | θp,X,Gp)

∂θp

)T ∣∣∣
θ̂p0

, (7)

where θ̂p0 = (α̂, βp0) denotes themaximum likelihood estimate
of the parameter vector under the null hypothesisH0 : β = βp0.
Then the PST statistic with respect to L is defined as

RL = max
ζ∈L\{0}

n
(ζ TSnp)2

ζ T �̂(θp0)ζ
= max

γ∈Rp\{0}
n

(γ TPLSnp)2

γ TPL�̂(θp0)PLγ
. (8)

The following theorem gives the asymptotic distribution
(with respect to n) of the PST statistic provided the same reg-
ularity conditions required for the convergence of the scores to
a multivariate normal random variable.

Theorem 1. Assume all objects are as described in Definition 1.
Let PL = QQT where the columns of the p× rmatrixQ are any
orthonormal basis for L. Define

Vp = V (θp0) = QT�(θp0)Q,

and assume the estimate V̂np = QT �̂(θp0)Q is invertible, and
that the conditions given in Section S.2 are satisfied. Then, under
the null (4), the rotated scores SQnp ≡ QTSnp satisfy

n1/2SQnp
P−→ SQp ∼ Nr(0,V ), (9)

the PST statistic (8) is

RL = n
(
SQnp

)T
V̂−1

np S
Q
np, (10)

and RL
L−→ χ2

r as n → ∞.

Theorem1 requires that V̂np is nonsingular; however, in prac-
tice it is possible to ensure that Q is in the column space of
�̂(θp0), so that V̂−1

np exists. The proof of Theorem 1 is given
in Section S.3. We also demonstrate there that the result of
Theorem 1 does not depend on the choice ofQ. We show howL

can be chosen for GLMs in Sections 3.1 and 3.2, and for imaging
data in the analysis of the ADNI dataset in Section 5.

2.2. The PST as p → ∞
We will show that as p → ∞ the PST statistic converges
to an integral over a stochastic process. The rate that p
approaches infinity does not depend on the sample size. Here,
we assume the data take values on the space Y = R × R

k ×
L2(V), where V is a nonempty compact subset of R

3 and
L2(V) is the space of square integrable functions, with respect
to the Lebesgue measure, from V to R. Let Oi = (Yi,Xi,Gi),
for i = 1, . . . , n, be independent and identically distributed
with Yi ∈ R, Xi ∈ R

k, and Gi ∈ L2(V). Realizations of Oi are
the outcome variable, a vector of k covariates and a func-
tion Gi. The infinite-dimensional score function, Un, is defined
in Section S.1 as the Fréchet derivative of the log likeli-
hood with respect to the parameter β ∈ L2(V), Un = Un(v ) =
∂

∂β

{(α, β(v ));O(v )}. The score is defined for fixed β0 as the
stochastic process

Sn = Un{·; (α̂, β0)} ∈ L2(V). (11)

Throughout Section 2.2, we assume that the infinite-
dimensional scores converge in probability to a mean zero
Gaussian process, S, that is,

n1/2Sn
P−→ S, (12)

and that the dimension of the finite parameter α is fixed. The-
orem S.1 in Section S.4 gives conditions under which this con-
vergence holds (Van der Vaart 2000). The following definition
of the PST statistic extends formula (10) to infinite-dimensional
parameters.

Definition 2. Let (q1(v ), . . . , qr(v )) be an orthonormal basis for
the linear subspace L ⊂ L2(V) where q j are continuous almost
everywhere, and r = dim(L) < n − m. Also, assume that Sn
and ∂

∂β
log f {Yi(v ) | α̂, β0(v )}, have continuous sample paths
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with respect to v , where ∂
∂β

denotes the Fréchet derivative.
Define the column vector SQn ∈ R

r, with jth element

(
SQn

)
j =

∫
V

q j(v )Sn(v )dv, (13)

and let V̂n be the r × r matrix with ( j, k)th element

V̂ j,k
n = n−1

n∑
i=1

(∫
V

q j(v )

[
∂

∂β
log f {Yi | α̂, β0(v )}

]
dv

)

×
(∫

V

qk(v )

[
∂

∂β
log f {Yi | α̂, β0(v )}

]
dv

)
,

which is readily shown to be the covariance matrix of SQn .
Assume that V̂n is invertible. Then the PST statistic with respect
to L is defined as

RL = n
(
SQn

)T V̂−1
n SQn . (14)

Whilewe have given a definition of the PST statistic in infinite
dimensions, in practice this statistic is not computable because it
depends on functions which are only observed on a finite grid.
The following theorem states that as the resolution of the grid
is increased then the finite parameter PST statistic (10) con-
verges to the infinite-parameter PST statistic (14). Moreover, as
the sample size increases the statistic converges to a function of
the Gaussian process S in (12).

Theorem 2. Let Snp be as defined in (3). Let Qp be the p×
r matrix with jth column q jp = (q j(v1p)ν(V1p), . . . , q j(vpp)

ν(Vpp))
T , where v jp and V jp are defined in Section S.1, Vp =

{V1p, . . . ,Vpp}, and ν denotes Lebesguemeasure. Denote SQnp =
QT

p Snp. Define SQ ∈ R
r as the vector with jth element

(SQ) j =
∫
V

q j(v )S(v )dv .

Assume the conditions for Theorems 1 and S.1, and that Sn,
∂
∂β

log f {Yi(v ) | α̂, β0(v )}, and S have continuous sample paths
with respect to v . LetV = EV̂n. For p1 > p2, let Vp1 be a refine-
ment of Vp2 , and assume that

lim
p→∞ sup

k
ν(Vkp) = 0. (15)

Then as n, p → ∞,

n
(
SQnp

)T
V̂−1

np S
Q
np

P−→ (SQ)TV−1SQ. (16)

The proof is given in Section S.4.

2.3. The PST in Normal LinearModels

The finite-sample distribution of the PST statistic for a normal
linear model can be found exactly. Define X = [X1, . . . ,Xn]T to
be an n × m full-rank matrix of covariates for each observation,
G = [G1, . . . ,Gn]T an n × p full-rank matrix of predictor vari-
ables of interest with p > n, and Y = [Y1, . . . ,Yn]T an n × 1
normal random vector with independent elements conditional
on X and G. The score test with normal error is based on the
model

Yi = αTXi + βTGi + Ei, (17)

where Ei ∼ N(0, σ 2) are independent.

Theorem 3. Under model (17) and the null H0 : β = 0

RL = L
r(n − m)

r + (n − m − r)F(n−m−r),r
, (18)

where F(n−m−r),r is F-distributedwith (n − m − r) and r degrees
of freedom.

The proof can be found in Section S.5. The finite-sample dis-
tribution of RL depends only on the sample size and the dimen-
sion of the basis, but not on the particular choice of L.

3. Specifying the Linear Subspace L

3.1. SpecifyingL in Generalized LinearModels

Here, we discuss choices for the selection of L in the context
of GLMs with the canonical link function. We restrict attention
to finite-dimensional parameters. Let X and G be as defined in
Section 2.3. Assume the outcome Y = [Y1, . . . ,Yn]T is from an
exponential family where the expectation can be written as

h(EYi) = αTXi + βTGi,

where h is the canonical link function. For the GLMwith canon-
ical link, the scores are (McCullagh and Nelder 1989)

Snp = n−1GT (Y − Ŷ),

where

Ŷ = [Ŷ1, . . . Ŷn]T

and Ŷi = h−1(xTi α̂) is the ith fitted value under the null. Let� be
the n × n diagonalmatrix with ith diagonal element�ii = (Yi −
Ŷi)

2. Then the estimate of the covariance (6) obtained using (7)
is

�̂ = n−1{GT�G − GT�X (XT�X )−1XT�G}. (19)

The score statistic is obtained from the scores and the estimated
information as in expression (2).

In this setup, the basis forL can be constructed from the prin-
cipal component analysis (PCA) of G. We write the PCA of G in
terms of the SVD G = T∗DQT , where the principal scores are
T = T∗D = GQ.

With this basis, the PST is equivalent to performing Rao’s
score test in a principal components regression model. To see
this, first note that principal component regression is defined by

h(EY) = Xα + TβT .

The scores for βT are

SnpT = n−1QTGT (Y − Ŷ) = QTSnp,

which are the same as the rotated scores in (9). The informa-
tion estimate is also equivalent. Thus, the score test statistic,
nSTnpT �̂−1

T SnpT , in principal component regression is equivalent
to the PST statistic (10).

Another useful basis for L can be constructed from vec-
tors that are indicators of variables that are expected to have a
similar relationship with the outcome. The anatomical basis we
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use in Section 5 is an example. To define the basis vectors q j,
j = 1, . . . , r, we let Q j ⊂ {1, . . . , p} such that Q j ∩ Q j′ = ∅

for j �= j′, and then set the kth element of the jth basis vector to
be qk j = 1(k ∈ Q j). These define orthogonal basis vectors since
the sets Q j are disjoint. This basis is equivalent to averaging r
subsets of the p predictor variables and performing a hypothesis
test of the regression onto the r averaged variables.

The choice of the basis is a critical decision as it affects the
power and interpretation of the post hoc inference. To clarify,
under the alternative the scores have nonzero mean

ESnp = μ ∈ R
p. (20)

If the projection is orthogonal toμ, then the test will have power
equal to the Type 1 error rate. The PCA basis assumes thatμ has
a spatial pattern similar to the covariance structure of the pre-
dictor variables. The anatomical basis assumes that all locations
within a region have similar parameter values. We discuss the
effect of the basis on the interpretation of the post hoc inference
in Section 4.

3.2. Choosing a Dimension for the PCA Basis

To choose a dimension for the PCA basis, we propose an
automatic procedure that sequentially tests bases of increasing
dimension while controlling the Type 1 error rate. To do this,
we first condition on the parameter estimate α̂ for the reduced
model and perform the SVD (� − �X (XT�X )−1XT�)1/2G =
TDQT . We use subsets of the columns of Q as the basis L. For
j �= k

cov
(
qTj Snp, q

T
k Snp | α̂

) = qTj G
T (� − �X (XT�X )−1XT�)Gqk

= qTj QD
2QTqk = 0.

Thus, each rotated score n1/2qTj Snp is asymptotically indepen-
dent, conditional on α̂, and can be tested by a separate chi-square
test at level α∗. If this is done sequentially for r = 1, . . . , n − m,
then, due to asymptotic independence, the probability of a Type
1 error under the global null is

n−m∑
r=1

P
((
n1/2qTj Snp

)2
> χ2

1 (α∗) for all j ≤ r
)

≈
n−m∑
r=1

(α∗)r ≤
∞∑
r=1

(α∗)r = α∗

1 − α∗ ,

where χ2
1 (α∗) denotes the 1 − α∗ quantile of the chi-squared

distribution with one degree of freedom. The approximate
equality is due to the asymptotic approximation. To control
the Type 1 error at level α, we choose α∗ = α/(1 + α), then we
sequentially test r = 1, . . . , (n − m) until we fail to reject a test
at level α∗. Note that the power depends critically on the first
test in the sequence; subsequent tests serve only to increase the
dimension of the basis. If the first component is orthogonal to
μ in (20), the probability of reaching other components that are
not orthogonal to μ is less than α∗.

A potentially more robust procedure is to test chunks of PCs
by choosing r1 = 0, r2, r3, . . . , rk = n − m and for the jth test
perform a chi-square test of PCs (r j + 1), . . . , r j+1 on r j+1 − r j
degrees of freedom. So long as the tests are independent, which

is true under the global null, the rejection threshold α∗ will
control the Type 1 error rate at level α. This automatic PCA
(aPCA) procedure is implemented below by testing the first
five components together and sequentially testing components
6, . . . , n − m one at a time. We demonstrate the procedure in
the ADNI data analysis below andType 1 error rates are assessed
in Section 6.

4. Post hoc Inference for Localizing Signal

After performing the test of association using the PST, it is of
primary interest to investigate the contribution of the scores to
the statistic to identify which locations in the image are associ-
ated with the outcome and the direction of the effect. This can
be done by projecting the scores onto L and performing infer-
ence that controls the FWER for the projected scores. Because
the projected scores are distributed in a linear subspace of Rp,
inference is much less conservative than performing inference
on the original score vector.

Our aim is to construct a rejection region for each element of
the projected score vector (PLSnp) j, for j = 1, . . . p. Under the
null, the projected scores are asymptotically normal,

PLSnp ∼ N(0,PL�PL).

The diagonal elements of PL�PL are not equal, so defining a sin-
gle rejection threshold for all elements favors rejection for ele-
ments with larger variances. To resolve this issue, we scale by
the inverse of the standard deviation of the projected scores.
Let � be the diagonal matrix with jth diagonal element � j j =
1/

√
(PL�PL) j j . Then the rejection threshold that controls the

FWER for the standardized projected scores is defined by c that
satisfies

1 − P(|(�PLSnp) j| > c for some j)
= P(max

j
|(�PLSnp) j|<c) = 1 − α. (21)

Thus, the distribution of the infinity norm of �PLSnp can be
used to compute a rejection threshold for the standardized pro-
jected scores that controls the FWER for the test of hypotheses
about the projected scores

HL

0 j : E(�PLSnp) j = 0. (22)

We reject the null hypothesis (22) at location j if the observed
projected score |(�PLsnp) j| > c. This threshold corresponds
to a single-step “maxT” joint multiple testing procedure
(Westfall and Young 1993) and provides strong control of the
FWER (Romano and Wolf 2005).

By (9) we have

�PLSnp
L−→ �QV 1/2Z,

whereZ ∼ Nr(0, I). Thus,we can approximate the region in (21)
by finding c so that∫

|�QV 1/2z|∞≤c
φr(z)dz = 1 − α,

where φr denotes the PDF of Z. In practice, we approximate this
integral by plugging in estimates for � andV 1/2.
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The integral is difficult to calculate due to the large dimen-
sions of Q, but can be approximated quickly and easily using
Monte Carlo simulations. B simulations are used to estimate
the CDF of the infinity norm, F̂B(·), which we use to obtain
adjusted p-values for each observed standardized projected
score, (�PLsnp) j, by evaluating

p j = 1 − F̂B
(
(�PLsnp) j

)
, (23)

or a rejection threshold can be obtained by using

c = F̂−1
B (1 − α). (24)

The p-value (23) for a given element of the standardized pro-
jected score vector is the probability of observing a jth pro-
jected score as large as (�PLsnp) j under the global null H0 :
β = β0. The standard deviation of the Monte Carlo estimate
(23) decreases at a

√
B rate and depends only on the volume of

the space being integrated, so the procedure will perform well
for computing adjusted p-values with a small error (Press et al.
2007). For example, with 10,000 simulations the standard devi-
ation is on the order of B−1/2 = 0.01.

Rejection of the null hypothesis H0 : β = β0 is not strictly
necessary to proceed with the post hoc inference procedure;
the post hoc procedure can be used separately from the PST. In
addition, it is important to note that the post hoc inference is
restricted to the projected scores. When the alternative hypoth-
esis is true, the rejection regions for the projected scores do not
necessarily control the Type 1 error for the unprojected scores.
This is demonstrated in the simulations in Section 6.

Asmentioned above, the basis affects the interpretation of the
inference on the projected scores. For the PCA basis, the inter-
pretation is as follows: over repeated experiments, if the data are
projected onto L, then the probability of falsely rejecting one
or more scores j with (�PLμ) j = 0 is at most α, where μ is as
defined in (20). The anatomical basis assumes all locations in
each basis vector have similar parameter values.

5. ADNI Data Analysis

We obtained data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The ADNI is a lon-
gitudinal observational study designed to investigate the early
biomarkers of Alzheimer’s disease; detailed MRI methods are
given by Jack et al. (2008). Mild cognitive impairment (MCI)
represents a subtle pre-Alzheimer’s Disease decline in cognitive
performance. The goal of our analysis is to identify whether a
subset of the neuroimaging data from the ADNI can provide
more information regarding diagnosis of MCI than the stan-
dardized memory tests obtained as part of the study. Moreover,
we are interested in localizing areas of the cortex that differ
on average between healthy controls (HC) and individuals with
MCI. Three-dimensional T1-weighted structural images for 229
healthy controls and 399 subjects with MCI were obtained as
part of the ADNI. This sample consists of subjects who had
images and a composite memory score available at baseline.

Table . Results for the logistic regression of diagnosis onto covariates and whole-
brain average cortical thickness. Results for average cortical thickness indicate a
highly significant association between cortical thickness and diagnosis. SE denotes
standard error.

Estimate (SE) p-Value

Age −. (.) <.
Sex (Male) −. (.) .
Memory score −. (.) <.
Average cortical thickness −. (.) <.

Cortical thickness was estimated using Freesurfer (Dale, Fis-
chl, and Sereno 1999; Fischl and Dale 2000). Subjects’ thick-
ness data were registered to a standard template for analysis
and smoothed at 10 mm FWHM to reduce noise related to pre-
processing and registration. The template contains 18,715 ver-
tex locations where cortical thickness is measured for each sub-
ject. Our goal is to identify whether the 18,715 cortical thickness
measurements provide any additional information regarding the
diagnosis of the individuals.

We perform the analysis in two ways: First, we proceed with
standard analysis methods currently available for neuroimag-
ing data in open access software (Fischl 2012). Second, we use
the PST statistic and the high-dimensional inference procedure
described above. For all analyses, we include age, sex, and the
composite memory score as covariates (Crane et al. 2012).

5.1. Standard Neuroimaging Analysis Procedure: Average
and Vertexwise Testing

Because neuroimaging studies typically collect many types of
images with many covariates and possible outcomes, it is com-
mon to obtain a summary measure of a high-dimensional vari-
able, and then proceed with further analysis if the summary
measure appears to be associated with an endpoint of interest.
In this analysis, we first take the average of all the cortical thick-
ness measurements across the cortical surface for each subject
and perform a regression with diagnosis as the outcome using
logistic regression. Specifically, let Ci denote the average corti-
cal thickness measurement for subject i, and Xi denote a vector
with an intercept term, age, an indicator for sex, and the com-
posite memory score for subject i. Then we fit the model

logit{P(Yi = 1 | Ci,Xi)} = XT
i α +CiβC.

If there is a significant relationship with the average cortical
thickness measurements, that is, if we reject H0 : βC = 0, then
we will proceed by performingmass-univariate vertexwise anal-
yses by running a separate model at each point on the cortical
surface.

The analysis using the average cortical thickness variable sug-
gests a highly significant association of cortical thickness with
diagnosis, indicating that subjectswith thinner cortices aremore
likely to have MCI (Table 1). Based on these results we choose
to investigate the relationship at each vertex to localize where in
the cortex the association occurs.

For the vertexwise analyses, we use the software package
Freesurfer to perform Benjamini–Hochberg (BH) correction
separately across each hemisphere (Figure 1(a)). The spatial
extent of the FDR-corrected results is more limited than what
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wemight expect given the very strong association between diag-
nosis and average cortical thickness. We conducted uncorrected
exploratory analyses to further identify regions related to the
whole-brain results (Figure 1(b)). The most significant results
occur in left and right frontal lobes. These analyses suggest
that distributed thinning in large portions of the frontal and
temporal lobes is associated with increased risk of MCI; how-
ever, these results are not found using a method that guarantees
control of the FWER or FDR.

5.2. PST and High-Dimensional Inference Procedures

To use the PST procedure, we perform the following steps:
1. Select a subspace L.
2. Perform the PST for the association between the image

and diagnosis.
3. If the test in Step 2 rejects, then perform post hoc infer-

ence as in Section 4.
We select a basis for L in the two ways described in Section

3.1. For this analysis, we use the aPCA procedure described in
Section 3.2 to choose the best PCA basis by testing the first
five components together and sequentially testing components
6, . . . , n − m. We also present results for the PCA basis fixed at
several other dimensions (r = 10, 20, 50) to demonstrate how
the basis dimension affects the results of the analysis. In addi-
tion, we consider a basis constructed from the r = 148 regions
(74 per hemisphere) of the anatomical atlas of Destrieux et al.
(2010). If we were unwilling to condition on the covariance
structure of the scores or the anatomical atlas, a basis could
be constructed that approximates a predetermined covariance

structure (e.g., a spatial AR(1)), or a covariance structure esti-
mated from an independent sample, which can be used to con-
struct the PCA basis. In addition to the PST, we perform the
sequence kernel association test (SKAT;Wu et al. 2011), the sum
of powered scores (SPU) test using the infinity norm, which cor-
responds to testing the max across the scores (Pan et al. 2014),
and the adaptive sum of powered scores test (aSPU), which has
competitive power to many other score tests (Pan et al. 2014).
The SKAT is known to be powerful if there is a distributed signal,
and the SPU infinity norm will be powerful for a sparse signal.
The aSPU test combines multiple tests based on the norms ‖S‖γ

γ

for γ varying over a finite subset of N by choosing one with the
smallest p-value. Permutation testing is used to assess the sig-
nificance of these statistics, however, recently, Xu et al. (2016)
derived the asymptotic distributions of these tests under mild
restrictions on the rate that p grows with respect to n.

The aPCA basis selected r = 7 by testing for r = 5 and then
sequentially testing the next two PCs. With this and all other
bases, we reject the null hypothesis using the PST (Table 2),
indicating that there is an association between the image and
diagnosis conditioning on the effects of age, sex, and composite
memory score. The SKAT, SPU, and aSPU tests also reject the
null.

Given the results of the PST, we are then interested in inves-
tigating how the scores contribute to the significant test statistic.
To investigate the contributions of the scores to the PST statis-
tic, we perform post hoc inference on the projected scores. We
use 10,000 simulations to obtain rejection regions for each of the
basis dimensions. The simulations ran for all bases in less than
2 min.

Figure . A comparison of inference procedures of the association between the imaging data and diagnosis. (a) Benjamini–Hochberg corrected vertexwise results,
(b) uncorrected vertexwise results, and (c and d) results based on PST high-dimensional inference that control the FWER of the projected scores. (c) The dimension (r = 7) of
the PCAbasis forLwas selected using the automatic procedure. (d) The  dimensional basis constructed from theDestrieux anatomical atlas. Blue values show significant
(α = 0.05) negative association with diagnosis indicating that thinner cortex in these regions is associated with an MCI diagnosis.
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Table . The χ 2 PST statistic and associated p-values for various basis dimensions;
Automatic, , , and . “Anatomical” is a basis constructed from an anatomical
atlas of dimension . The last column denotes the % family-wise error rejection
thresholds for the projected scores, that is, the probability any projected score is
above those values under the null is %. The thresholds are obtained using ,
simulations.

Test statistic p-Value Rejection threshold

Automatic (r= )  <. .
r=   <. .
r=   <. .
r=   <. 
Anatomical basis  . .
SKAT 5 × 106 <.
SPU Inf  <.
aSPU .

Figure . PST inference for PCA bases of various rank; Automatic (), , , .
Increasing the dimensionality of the basis increases spatial specificity, but comes
with the cost of more conservative inference (see, e.g., Table ).

The results suggest that thinner cortex in bilateral tempo-
ral and frontal lobes and right precuneus is associated with an
increased risk ofMCI (Figure 1(c) and 1(d)). Results are given as
− log10(p) where the p-value p is obtained using the simulated
distribution (23). These locations are known to be thinner inAD
versus HC as well as in AD versus MCI (Singh et al. 2006) and
the results here demonstrate that there are significant differences
between MCI and HC in the same region. The results indicate
that the degree of frontal and temporal lobe thinning is corre-
lated with diagnostic severity, and suggest that measurements
of cortical thickness may provide useful information over and
above neurospsychological scales in identifying people at risk
for AD. Differences in these regions between MCI and HC were
previously shown byWang et al. (2009); however the authors did
not control for multiple comparisons or adjust for covariates.

To reiterate, the blue areas in Figure 1(c) and 1(d) are based
on low-rank inference and control the FWER of the projected
scores. The procedure findsmore significant locations over stan-
dard correction methods seen in Figure 1(a) and 1(b) by per-
forming inference in a lower-dimensional space. The p-values
obtained in Figures 1 and 2 use (23) and indicate the probability
of observing a projected score statistic as or more extreme than
the observed value under the global null H0 : β = 0. Though
interpretation is restricted to the projected scores, the results
align with previous reports (Singh et al. 2006; Wang et al. 2009).

To demonstrate the impact of the choice of r, we performed
post hoc inference on the scores for the PCA basis with four
different dimensions (Figure 2). It is clear from Figure 2 that
increasing the dimension of the basis increases the spatial speci-
ficity of the results. However, the larger bases also come with
the cost of reduced power due to the larger degrees of freedom
of the basis. This is also illustrated in Table 2, where the larger
bases have a higher rejection threshold.

6. Neuroimaging-Based Simulation Study

In this section, we perform a simulation study using data gener-
ated for the right hemisphere of the cortical thickness data from
the ADNI dataset measured at p =9361 locations, called ver-
tices. We simulate a binary outcome of interest, as in the ADNI
analyses presented above. We select two anatomical regions
(superior temporal sulcus and superior frontal sulcus) of 669
vertices total to have a negative association with the outcome
and one region (anterior part of the cingulate gyrus and sulcus)
of 191 vertices to have a positive association. The first two of
these regions were selected because of their association in the
ADNI dataset. The third region was selected to compare the
performance of the tests when there are different locations with
positive and negative associations with the outcome. To create
a mean and covariance structure similar to real data within the
regions of association, we create the mean vectors and covari-
ance matrices for the simulations from the full sample of sub-
jects used in the ADNI Freesurfer analysis above, yielding two
full-rank covariancematrices,�− and�+ andmean vectorsμ+
and μ−.

For each simulation, we select a random subset without
replacement from the control subjects used in the ADNI neu-
roimaging analysis. Data within the negatively and positively
associated regions are generated as independent multivariate
normal distributions for each subject, with covariance struc-
tures Gi,− ∼ N(μ−, �−) and Gi,+ ∼ N(μ+, �+), respectively.
We centered the imaging data prior to analysis.

In each simulation, the outcome is generated under a logistic
model

logit(EYi) = α0 − β1TGi,− + 2β1TGi,+, (25)

where α0 is set to the log ratio of MCI to controls in the neu-
roimaging analyses section. 1, denotes a vector of ones, and β

is an unknown parameter that we vary from 0 to 0.005. We
multiply the values in the positive region by 2 to increase sig-
nal because it is a spatially smaller cluster than the two nega-
tive regions. In addition to simulationswhere the coefficients are
constant across each region, in the supplement we perform sim-
ulations generating the parameters from a uniform distribution.

We construct the subspace L in three ways. The first is to
use the automatic procedure (Section 3.2) in each sample condi-
tioning on the estimate α̂0. The second basis type is constructed
in each sample from the first r = 10, 20, 50 principal compo-
nents from a PCA of G(I − H), where H is the projection onto
the intercept. The third basis is constructed from regions in the
anatomical atlas of Destrieux et al. (2010), by randomly group-
ing the 74 regions into r groups and using normed indicator vec-
tors for each group as the basis.
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If we denote the set of indices with a nonzero associationwith
the outcome by J, then the expectation of score j,μ j, is nonzero
only for j ∈ J, where μ is as defined in (20). Thus, for indices
with j /∈ J we report Type 1 error and for indices with j ∈ J we
report power.

Similarly, the mean of the standardized projected scores,
�Pμ, determines Type 1 error and power for the projected
scores �PSnp. The FWER and FDR of the projected scores are
reported for the basis constructed from the anatomical atlas and
the PCA bases. In general, no element of the standardized pro-
jectedmean is exactly zero, so Type 1 error is assessed by thresh-
olding the standardized projected parameter vector at the 0.2
quantile and reporting the rejection rate for vertices with pro-
jected parameter values below that threshold.

We perform 1000 simulations for sample sizes of n =
100, 200 and compare the PST for the automatic procedure and
fixed bases with dimensions of r = 10, 20, 50. In addition, we
compare the PST to the SKAT (Wu et al. 2011), the sum of pow-
ered scores (SPU) test using the infinity norm, and the aSPU
(Pan et al. 2014). We assess pointwise power and Type 1 error
of the PST inference procedure with uncorrected, Bonferroni-
corrected, and BH-corrected results. We also compare FWER
and FDR between methods. For the pointwise results, we assess
the power and Type 1 error for the unprojected scores using
inference designed for the projected scores.

Several types of bases for the PST demonstrate superior
power to the other tests (Figure 3) due to their ability to remove
the influence of unassociated scores from the test by maximiz-
ing over the basis. If the basis vectors are not informative about
the structure of the signal, then the PSTwould not performwell.
The PCA and aPCA PSTs leverage the spatial covariance of the
data by using a basis constructed from the matrixG, which is an
argument of the covariance of the scores as in Equation (19). The
tests with rank r = 50 do not perform well with n = 100 due to
the error in the asymptotic approximation; the error is evident in
the conservative Type 1 error of these tests, which is well below
the expected 0.05 threshold when β = 0. The aPCA has better

Table . Error rates for the projected scores for the automatic PCA bases and
anatomical bases for n = 200 and β = 0.002.

FWER FDR

aPCA . <.
PCA  . <.
PCA  . <.
PCA  . <.
Anatomical  . .
Anatomical  . .
Anatomical  . .
Anatomical  . .

power than the other PCA bases because a low rank basis suf-
fices to capture the signal in the data, while the higher dimen-
sional bases have low power due to the inclusion of basis vectors
that do not capture signal. aSPU does not make any assumption
about the structure of the signal but is adaptive to the sparsity
of the signal, thus it performs better than the SKAT and PSTs
with bases of higher dimension. In this simulation, the aSPU
test does not perform as well as several of the PSTs because it
does not leverage the spatial information in the covariance of the
scores, which is informative in this case. However, if the covari-
ance among predictors were uninformative about the signal, it
is likely that the aSPU test would be superior.

As expected, the post hoc inference procedure controls the
FWER of the projected scores for all basis dimensions (Table 3).
In general, the post hoc inference procedure does not control the
FWER or FDR of the unprojected scores (Table 4) as the infer-
ence is intended for the projected scores. However, for larger
PCA bases our procedure does control the FDR (bold rows in
Table 4). This is likely because the projection captures most
of the variation in μ, so that the projection �Pμ is close to
μ. Future investigation of whether inference for the projected
scores will control any error rate for unprojected score vector is
warranted.

The vertexwise error rate describes how effective a procedure
is at controlling the error rate for the unprojected scores at each
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Figure . Power results for the PST with various bases compared to aSPU and the SKAT. “aPCA” is the automatic basis and “PCA r” indicates the basis formed from the first r
components of the PCA of the design matrix G. “Atlas r” indicates the bases formed from the anatomical atlas with r regions covering the cortex.
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Table . Hit (HR), false discovery (FDR), and family-wise error (FWER) rates for the
unprojected scores. Higher dimensions of the PCA basis control the FDR while
maintaining a higher hit rate for the unprojected scores. Note, however, that in
practice it is not possible to know the dimension of the basis required to con-
trol the FDR of the unprojected scores. Bold rows control the FDR at q = 0.05.
BH= Benjamini–Hochberg.

HR FDR FWER

aPCA . . .
PCA 10 0.55 0.05 0.45
PCA 20 0.34 0.02 0.23
PCA 50 0.12 0.01 0.10
Anatomical  . . .
Anatomical  . . .
Anatomical  . . .
Anatomical  . . .
Uncorrected . . .
Holm <0.01 <0.01 <0.01
BH 0.10 0.05 0.22

location. The vertexwise error rate of the PST inference proce-
dure for the unprojected scores using the PCA 10 basis is low
while maintaining better vertexwise power than BH (Figure 4;
PCA10). This is because in any given sample theremay be a high
false positive rate, but the errors across samples do not appear
in the same locations. The BH and Bonferroni corrections both
workwell at controlling the vertexwise Type 1 error rate but have
lower power than the PCA-based PST procedure (Figure 4). The
bases constructed from the anatomical atlas tend to have large
regions of vertexwise Type 1 error for the unprojected scores. At
the largest basis dimension, the atlas allows for enough speci-
ficity to reduce the vertexwise error. All methods have lower
power to detect the positive cluster than the two negative clus-
ters. This may be due to the characteristics of the covariance
structure in the positive cluster which overlaps gyral and sulcal
regions.

7. Discussion

We have proposed the PST, a modification of the score test for
high-dimensional data that works by projecting the scores to
a lower-dimensional linear subspace. The procedure offers a
novel post hoc inference on the projected scores by performing

inference in the subspace where the test statistic was estimated.
Because the post hoc inference is based on the same model and
degrees of freedom as the PST statistic, the interpretation of
high-dimensional results agree closely with the results from the
PST.

The ability to choose a subspace Lmakes the procedure very
flexible. For example, in medical imaging the basis for the space
can be chosen based on anatomical or functional labels, or from
data acquired in another imaging modality. Particular hypothe-
ses can be targeted by selecting a basis that includes indicators of
certain regions or weights particular locations to target specific
spatial patterns. If orthogonal indicator vectors are used as the
basis, then the approach can be seen as testing averages of subre-
gions of the data as in Section 5. In this case, the PST procedure
can be seen as a maxTmultiple testing procedure of the regional
averages that accounts for the correlation structure of the tests.

There are several limitations of the proposed procedure. First,
the success of the procedure depends critically on the projection
chosen. If a projection is chosen that is orthogonal to the mean
vector, the PST will fail to capture any signal in the data. This
is a limitation of any dimension-reducing procedure. Further
research could investigate whether maximization of the score
test with regularization can yield a test statistic whose distribu-
tion is tractable. Regularization may remove the subjectivity of
selecting a basis and make the procedure more robust. Second,
while the dimension reduction procedure preserves power and
the results align closely with those from previous research, the
inference does not guarantee control of the FWER or FDR of
the original score vector. Future research will investigate how
inference of the original score vector can be made by threshold-
ing the projected score vector. This is similar in concept to the
dependence-adjusted procedure discussed by Fan, Han, and Gu
(2012) for controlling the FDP and may offer increased power
by leveraging the covariance of the test statistics. These limita-
tions notwithstanding, our procedure generalize Rao’s score test
to the high- and infinite-dimensional settings and introduce a
new inference approach based on projecting the test statistics
to a lower-dimensional space where inference can be made on
fewer degrees of freedom.

Figure . Vertexwise power or Type  error is measured as the proportion of simulated samples where each of the testing procedures rejects the null at a given location.
Results are shown for β = 0.002. “Truth” indicates locations where signal was simulated according to the model ().
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SupplementaryMaterials
Proofs of all theorems and additional simulations are included in the
Supplementary Material.
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